

HYD 3 6K-EP Installation and operating manual

Version 01 | May 2022 English

HYD 3000-EP, HYD 3680-EP, HYD 4000-EP, HYD 4600-EP, HYD 5000-EP, HYD 5500-EP, HYD 6000-EP

TABLE OF CONTENT

Table of Content

1	About the	nis manual	5	
	1.1	Copyright declaration	5	
	1.2 Structure of the manual			
	1.3	Scope	6	
	1.4	Target group	6	
	1.5	Symbols used	6	
2	Basic sa	afety information	8	
	2.1	Safety information	8	
	2.2	Symbols and signs	12	
3	Product	features	15	
	3.1	Product information	15	
	3.2	Labelling on the device	16	
	3.3	Functional features	17	
	3.4	Application modes	19	
4	Installat	ion	22	
	4.1	Installation information	22	
	4.2	Installation procedure	23	
4.3 Examination before installation		Examination before installation	23	
	4.4	Connections	25	
	4.5	Tools	26	

	4.6	Installation location	28
	4.7	Unpacking the inverter	31
	4.8	Installation of the inverter	32
5	Electrica	al connections	34
	5.1	Safety instructions	34
	5.2	Electrical connection	37
	5.3	Connecting the PE cable	38
	5.4	Connecting the DC cables	39
	5.5	Connecting the battery	42
	5.6	Connecting the AC power cables	44
	5.7	System monitoring	51
	5.8	Installation of the WiFi-, GPRS or Ethernet stick	53
	5.9	Multifunctional COM Port	58
6	Commis	sioning the inverter	72
	6.1	Safety test before commissioning	72
	6.2	Check before turning on inverter	72
	6.3	Starting the inverter	73
	6.4	Initial setup	74
7	Operatio	on of the device	78
	7.1	Control panel and display field	78
	7.2	Standard display	79

TABLE OF CONTENT

SCIFAR

9	Technica	al data	102
	8.2	Maintenance	101
	8.1	Troubleshooting	89
8	Troubles	shooting handling	89
	7.4	Menu structure	84
	7.3	Energy Storage Modes	80

1 About this manual

This manual contains important safety information that must be observed during installation and maintenance of the device.

Carefully read this manual before use and retain it for future reference!

This manual must be treated as an integral component of the device. The manual must be kept in close proximity to the device, including when it is handed over to another user or moved to a different location.

1.1 Copyright declaration

The copyright of this manual is owned by SofarSolar. It may not be copied – neither partially nor completely – by companies or individuals (including software, etc.) and must not be reproduced or distributed in any form, or with the appropriate means.

SofarSolar reserves the right to final interpretation. This manual may be amended following feedback from users or customers. Please consult our website at http://www.sofarsolar.com for the latest version.

The current version was updated on 06/02/2023.

1.2 Structure of the manual

This manual contains important safety and installation instructions that must be observed during installation and maintenance of the device.

1.3 Scope

This product manual describes the installation, electrical connection, commissioning, maintenance and fault elimination procedures of the HYD 3000 ... 6000-EP inverters.

1.4 Target group

This manual is intended for specialist electrical engineers who are responsible for the installation and commissioning of the inverter in the PV system, as well as the PV system operators.

1.5 Symbols used

This manual contains information on safe operation and uses symbols to ensure the safety of persons and property as well as the efficient operation of the inverter. Please read through the following symbol explanations carefully in order to prevent injury or property damage.

ABOUT THIS MANUAL

SCIFAR

Non-observance will result in death or serious injury.

• Follow the warnings in order to prevent death or serious injury!

Non-observance may result in death or serious injury.

• Follow the warnings in order to prevent serious injury!

Non-observance may result in minor injury.

• Follow the warnings in order to prevent injury!

ATTENTION

Non-observance may result in property damage!

• Follow the warnings in order to prevent damage to or destruction of the product.

NOTE

• Provides tips essential to the optimal operation of the product.

2 Basic safety information

NOTE

• If you have any questions or problems after reading the following information, please contact SofarSolar

This chapter details the safety information pertaining to the installation and operation of the device.

2.1 Safety information

Read and understand the instructions within this manual and familiarise yourself with the relevant safety symbols in this chapter before beginning with the installation of the device and eliminating any faults.

Before connecting to the power grid, you must obtain official authorisation from the local power grid operator in accordance with the corresponding national and state requirements. Furthermore, operation may only be carried out by qualified electricians.

Please contact the nearest authorised service centre if any maintenance or repairs are required. Please contact your dealer to obtain information about your nearest authorised service centre. Do NOT carry out repairs on the device yourself; this may lead to injury or property damage. Before installing the device or carrying out maintenance on it, you must open the DC switch in order to interrupt the DC voltage of the PV

generator. You can also switch off the DC voltage by opening the DC switch in the Array junction box. Not doing this may result in serious injury.

2.1.1 Qualified personnel

Personnel tasked with the operation and maintenance of the device must have the qualifications, competence and experience required to perform the described tasks, while also being capable of fully understanding all instructions contained within the manual. For safety reasons, this inverter may only be installed by a qualified electrician who:

- has received training on occupational safety, as well as the installation and commissioning of electrical systems
- is familiar with the local laws, standards and regulations of the grid operator.

SofarSolar assumes no responsibility for the destruction of property or any injuries to personnel caused by improper usage.

2.1.2 Installation requirements

Please install the inverter according to the information contained in the following section. Mount the inverter to a suitable object with a sufficient load-bearing capacity (e.g. walls, PV frames etc.) and ensure that the inverter is upright. Choose a suitable place for the installation of electrical devices. Ensure that there is sufficient space for an emergency exit which is suitable for maintenance. Ensure sufficient ventilation in order to guarantee an air circulation for the cooling of the inverter.

2.1.3 Transport requirements

The factory packaging is specifically designed to prevent transport damage, i.e. violent shocks, moisture and vibrations. However, the

device must not be installed if it is visibly damaged. In this case, notify the responsible transport company immediately.

2.1.4 Labelling on the device

The labels must NOT be concealed by items and foreign objects (rags, boxes, devices, etc.); they must be regularly cleaned and kept clearly visible at all times.

2.1.5 Electrical connection

Observe all applicable electrical regulations when working with the inverter.

Dangerous DC voltage

 Before establishing the electrical connection, cover the PV modules using opaque material or disconnect the PV generator from the inverter. Solar radiation will cause dangerous voltage to be generated by the PV generator!

Danger through electric shock!

 All installations and electrical connections may only be carried out by trained electricians!

IMPORTANT

Authorisation for grid feed-in

• Obtain authorisation from the local power grid operator before connecting the inverter to the public power grid.

NOTE

Voiding of guarantee

• Do not open the inverter or remove any of the labels. Otherwise, SofarSolar shall assume no guarantee.

2.1.6 Operation

Electric shock

- Contact with the electrical grid or the device's terminals may result in an electric shock or fire!
- Do not touch the terminal or the conductor which is connected to the electrical grid.
- Follow all instructions and observe all safety documents that refer to the grid connection.

A CAUTION

Burning due to hot housing

- While the inverter is being operated, several internal components will become very hot.
- Please wear protective gloves!
- Keep children away from the device!

2.1.7 Repair and maintenance

Dangerous voltage!

- Before carrying out any repair work, first switch off the AC circuit breaker between the inverter and power grid, and then the DC switch.
- After switching off the AC circuit breaker and the DC switch, wait a minimum of 5 minutes before starting any maintenance or repair work.

IMPORTANT

Unauthorised repairs!

- Following the elimination of any faults, the inverter should be fully functional once more. Should any repairs be required, please contact a local authorised service centre.
- The internal components of the inverter must NOT be opened without the relevant authorisation. Shenzhen SOFARSOLAR Co., Ltd. assumes no responsibility for any resulting losses or defects.

2.2 Symbols and signs

A CAUTION

Beware of burning hazards due to the hot housing!

• While the inverter is in operation, only touch the display and the buttons, as the housing can become hot.

ATTENTION

Implement earthing!

- The PV generator must be earthed in accordance with the requirements of the local power grid operator!
- For reasons of personal safety, we recommend that all PV module frames and inverters of the PV system are reliably earthed.

Damage due to overvoltage

 Ensure that the input voltage does not exceed the maximum permissible voltage. Overvoltage may cause long-term damage to the inverter, as well as other damage that is not covered by the warranty!

2.2.1 Symbols on the inverter

Several symbols pertaining to safety can be found on the inverter. Please read and understand the content of these symbols before starting the installation.

Symbol	Description
Smin	Residual voltage is present in the inverter! Before opening the inverter, you should wait five minutes to ensure that the capacitor has been fully discharged.

BASIC SAFETY INFORMATION

Symbol	Description
4	Caution! Danger through electric shock
<u>sss</u>	Caution! Hot surface
CE	The product is compliant with EU guidelines
(_)	Earthing point
i	Please read the manual before installing the inverter
IP	Device degree of protection according to EN 60529
+-	Positive and negative poles of the DC input voltage
<u><u>†</u>†</u>	The inverter must always be transported and stored with the arrows pointing upward
\bigotimes	RCM (Regulatory Compliance Mark) The product meets the requirements of the applicable Australian standards.

3 Product features

This chapter describes the product features, dimensions and efficiency levels.

3.1 Product information

The HYD 3000 ... 6000-EP is a grid-coupled PV and energy storing inverter which can also supply energy in stand-alone operation. The HYD 3000 ... 6000-EP has integrated energy management functions which cover a diverse range of application scenarios.

HYD 3000 ... 6000-EP inverters may only be used with photovoltaic modules which do not require one of the poles to be earthed. In normal

PRODUCT FEATURES

operation, the operating current must not exceed the limits specified within the technical data.

The selection of the optional inverter parts must be determined by a qualified technician who has good knowledge of the installation conditions.

Product dimensions

HYD 3...6K-EP:

Wall bracket:

3.2 Labelling on the device

Labelling must not be covered or removed!

3.3 Functional features

The DC output generated by the PV generator can be used for both grid feed-in and battery charging.

The battery can supply the energy to the grid or the consumer. The emergency current supply mode (EPS) can provide inductive loads such as air conditioning systems or refrigerators with an automatic switchover time of less than 10 milliseconds.

3.3.1 Functions

- Flexible switching between grid operation and energy storage operation
- Charging/discharging current up to 100 A
- Parallel operation with up to 10 units
- Monitoring via RS485/WiFi/Bluetooth, optional: GPRS

PRODUCT FEATURES

3.3.2 Electrical block diagram

3.4 Application modes

3.4.1 Typical energy storage system

A typical energy storage system with PV panels and battery unit(s), connected to the grid.

3.4.2 System without PV connection

In this configuration, there are no PV panels connected and the battery is charged through the grid connection.

PRODUCT FEATURES

3.4.3 System without battery

In this configuration, the battery unit(s) can be added later.

3.4.4 Back-up mode (off-grid)

When there is no grid connection, the PV panels and the battery will provide electricity to the critical load.

3.4.5 System with multiple inverters

Up to 10 inverters can be connected in parallel, resulting in an EPS output of up to 60 kVA.

NOTE

- For the parallel switching of several devices, it is recommended to use a joint AC load break switch for the connected loads both at the LOAD and GRID connection.
- In order to evenly distribute the loads among the inverters, the cable length between each output and the load must be the same.
- If the maximum apparent power of a load is greater than 110% of the inverter's rated output, the device must not be connected via the AC LOAD terminal, but rather directly to the grid.

4 Installation

4.1 Installation information

A DANGER

Fire hazard

- Do NOT install the inverter on flammable material.
- Do NOT install the inverter in an area in which flammable or explosive material is stored.

CAUTION

Burning hazard

 Do NOT install the inverter in places where it can be accidentally touched. The housing and heat sink may become very hot while the inverter is in operation.

ATTENTION

Environment requirements

- Choose an easily accessible place that's dry, clean, and tidy.
- Ambient temperature range: -30°C–60°C.
- Relative humidity: 0–100% (non-condensed).
- The inverter should be installed in a well-ventilated location.
- Maximum altitude: 4000m.

IMPORTANT

Weight of the device

- Take into account the weight of the inverter when transporting and moving it.
- Choose a suitable installation location and -surface.
- Commission a minimum of two persons with the installation of the inverter.
- Do not set down the inverter upside-down.

4.2 Installation procedure

Mechanical installation is performed as follows:

- 1. Examine the inverter before installation
- 2. Prepare the installation
- 3. Select an installation location
- 4. Transport the inverter
- 5. Mount the rear panel
- 6. Install the inverter

4.3 Examination before installation

4.3.1 Checking the external packaging materials

Packaging materials and components may become damaged during transportation. Therefore, the external packaging materials must be examined before the inverter is installed. Check the external packaging material for damage, e.g. holes and cracks. If you discover any cases of damage, do not unpack the inverter and contact the transport company

and/or dealer immediately. It is recommended that the packaging material should be removed within 24 hours before installing the inverter.

4.3.2 Checking the delivery scope

After unpacking the inverter, check that the delivery items are both intact and complete. In the event of any damage or missing components, contact the wholesaler.

No.	Image	Description	Quantity
01	W.Z.L.	Inverter HYD 3000 6000-EP	1
02		Wall bracket	1
03	() ()	PV+ input terminal	2
04		PV- input terminal	2
05	Josef .	Crimp contact socket	2
06	Þ	Crimp contact pin	2
07		BAT- input terminal	1
08		BAT+input terminal	1
09	- CO	M6 hexagon screws	2
10	a -	M8*80 Expansion bolts used to secure the wall-mount bracket to the wall	4
11	A.F.	AC Grid connector	1
12		Load Output connector	1

INSTALLATION

No.	Image	Description	Quantity
13	8-88-8	Link port connector	1
14		8 pin terminal	1
15		Split Core Current Transformer	1
16		COM 16pin connector	1
17		Communication cable	1
18		WiFi stick	1
19		Manual	1
20		The warranty card	1
21		Quality Certificate	1

4.4 Connections

A CAUTION

Damage during transportation

• Please check the product packaging and connections carefully prior to installation.

1	Battery input terminals	2	DC switch
3	PV input terminals	4	USB/WiFi
5	Link Port 0	6	Link Port 1
0	СОМ	8	Grid connection port
9	Load connection port	10	External LCD terminal

4.5 Tools

Prepare the tools required for the installation and the electrical connection.

No.	Tool	Model	Function
01		Hammer drill Recommended drill diameter: 6mm	Used to drill holes in the wall.
02		Screwdriver	Wiring
03		Cross screwdriver	Used to remove and install the screws of the AC terminal

INSTALLATION

No.	Tool	Model	Function
04		Removal tool	Used to remove the PV terminal
05		Wire stripper	Used to strip the wire
06		4mm Allen key	Used to turn the screw to connect the rear panel to the inverter.
07		Crimping tool	Used to crimp power cables
08		Multimeter	Used to check the earthing
09	5000 O	Wrench (≥ 32mm)	Used to tighten expansion bolts
10		Marker	Used for marking
11		Measuring tape	Used to measure distances
12	0-180°	Spirit level	Used to align the wall bracket

INSTALLATION

SCIFAR

No.	Tool	Model	Function
13		ESD gloves	for the installer
14		Safety goggles	for the installer
15		Anti-dust respiratory mask	for the installer

4.6 Installation location

Choose a suitable position for the installation of the inverter. Ensure that the following requirements have been fulfilled:

Minimum distances for individual HYD 3000 ... 6000-EP inverters:

Minimum distances for several HYD 3000 ... 6000-EP inverters:

INSTALLATION

NOTE

- Choose an easily accessible place that's dry, clean, and tidy.
- Ambient temperature range: -30°C–60°C.
- Relative humidity: 0–100% (non-condensed).
- The inverter should be installed in a well-ventilated location.
- Maximum altitude: 4000m.

4.7 Unpacking the inverter

1. Open the packaging and grip underneath the inverter at the sides with both hands.

2. Lift the inverter out of the packaging and move it to its installation position.

ATTENTION

Mechanical damage

- In order to prevent injuries and damage to the device, ensure that the inverter is kept balanced while it is being moved - it is very heavy.
- Do not place the inverter on its connections, as these are not designed to bear its weight. Place the inverter horizontally on the ground.
- When you place the inverter on the ground, place foamed material or paper underneath it in order to protect its housing.

4.8 Installation of the inverter

- Hold the wall bracket in the desired place and mark the three holes.
 Put the wall bracket aside and drill the holes.
- 2. Insert the complete dowel into the hole vertically.
- 3. Fasten the rear panel to the wall using the four screws.

- 4. Place the inverter onto the wall bracket. Secure the inverter to the wall bracket M6 screws.
- 5. You can secure the inverter to the wall bracket using a lock.

5 Electrical connections

5.1 Safety instructions

This topic describes the electrical connections of the inverter HYD 3000 ... 6000-EP. Read this section thoroughly and carefully before connecting the cables.

Electrical voltage at the DC connections

 Ensure that the DC switch is OFF before establishing the electrical connection. The reason is that the electrical charge remains in the capacitor after the DC switch has been switched off. Therefore, at least 5 minutes must pass before the capacitor has been electrically discharged.

A DANGER

Electrical voltage

 PV modules generate electrical energy when exposed to sunlight, and this may present an electrical shock hazard. Therefore, cover the PV modules with an opaque sheet before connecting to the DC input power cable.

ATTENTION

Qualification

• The installation and maintenance of the inverter must be carried out by an electrician.

NOTE

• The open-circuit voltage of the modules connected in series must be lower than or equal to 600 Vdc.

The connected PV modules must be compliant with IEC 61730 class A.

lsc PV (absolute maximum)		18,0 A / 18,0 A
	HYD 3000-EP	15 A
	HYD 3680-EP	16 A
	HYD 4000-EP	20 A
Maximum AC overcurrent	HYD 4600-EP	20,9 A
	HYD 5000-EP	21,7 A
	HYD 5500-EP	25 A
	HYD 6000-EP	27,3 A

The DVC (decisive voltage classification) is the circuit voltage which constantly occurs between two arbitrary live parts during proper use in a worst-case scenario:

ELECTRICAL CONNECTIONS

Interface	DVC
DC input connection port	DVCC
AC connection port	DVCC
Battery connection port	DVCC
Load connection port	DVCC
USB/WiFi interface	DVCA
COM interface	DVCA
Link Port	DVCA

Wiring overview

Component	Description		Recommended cable type	Recommended cable size (mm ²)	
BATTERY + –	+ : Positive of lithium batte	cable of the ry	Outdoor multicore	46 - 20	
.00.	- : Negative the lithium b	cable of attery	copper cable	10 - 20	
PV1 PV2 + OD +	+ : Positive of PV module	cable of			
- 📵 📵 -	- : Negative PV module	cable of	PV cable	4 – 0	
AC LOAD		L			
	Load	Ν	Outdoor multicore	4 – 6	
N		PE			
AC GRID		L		5 – 8	
	AC	Ν	Outdoor multicore		
		PE			

5.2 Electrical connection

The electrical connection is established as follows:

- 1. Connect PE cable
- 2. Connect DC input cable

- 3. Connect AC output power cable
- 4. Connect communication cable (optional)

5.3 Connecting the PE cable

Connect the inverter to the equipotential bonding bar by using the protective earth cable (PE) for grounding.

ATTENTION

Pole earthing not permissible!

 As the inverter is transformerless, the plus and minus poles of the PV generator must NOT be earthed. Otherwise, the inverter will malfunction. In the PV system, all non-current carrying metal parts (e.g. PV module frames, PV rack, combiner box enclosure, inverter enclosure, etc.) require earthing. The colour of the cable should be yellow-green.

Please follow below steps to connect the PE cable.

 Remove the insulation of the cable. For outside use, cables of ≥ 4mm² are recommended for earthing).

2. Crimp the cable to the ring terminal:

3. Install the crimped ring terminal and the washer with the M5 screw and tighten these with a torque of 3 Nm using an Allen key.

③ Threaded hole

5.4 Connecting the DC cables

Please observe the recommended cable dimensions:

Cable cross-section (m	Outer diameter of	
Range Recommended value		cable (mm)
4.0 6.0	4.0	4.5 7.8

- 1. Remove the crimp contacts from the positive and negative connections.
- 2. Remove the insulation of the cables:

- Insert the positive and negative DC cables into the corresponding cable glands.
- 4. Crimp the DC cables. The crimped cable must be able to withstand a tractive force of 400 Nm.

SCIFAR

Danger of reverse polarity!

- Ensure that the polarity is correct before connecting the cables to the DC input ports!
- Insert the crimped DC cables into the corresponding connector housing until you hear a "clicking" sound.
- 6. Re-screw the cable glands to the connector housing.
- Insert the positive and negative connectors into the corresponding DC input terminals of the inverter until you hear a "clicking" sound.

Locking

NOTE

• Put the protective caps on the unused DC connections.

To remove the connector, please follow below instructions.

CAUTION

Danger of DC arcing

• Before removing the plus and minus connector, ensure that the DC switch has been set to OFF.

In order to remove the plus and minus connection from the inverter, insert a removal key into the locking and press on the key with the adequate force as shown in the following illustration:

5.5 Connecting the battery

1. Insert the connectors into the battery ports, then select a suitable cable. The recommended current capacity of cable is at least 125 A.

2. Connect the cable.

3. Turn the connector clockwise until it locks into place.

4. Connect the negative cable following the same steps.

5. Remove the connector by turning it anticlockwise.

hulas (miles)	No.			Qty.
	1		G7X5000	1 pc
CAN CAN	2	=	Cable for Inverter & Battery Connection	1 Set (Positive & negative)
annite	3	=	Cable for Battery & Battery Connection	None
	4	—	Cable for Inverter & Battery Communication	1 pc
	5	_	Cable for Battery & Battery Communication	None
PE	6	—	PE	Not Supplied

For batteries with a BMS (for example Li-Ion batteries), you need to connect either the CAN Bus or RS485 with the Battery Management system.

The inverter will use the CAN Bus or RS485 Bus based on the battery selection on the inverter LCD menu.

5.6 Connecting the AC power cables

Connect the inverter to the critical loads on the EPS port and the AC power distributor or the power grid using AC power cables.

AC connection

- Each inverter must have its own circuit breaker.
- Do not connect any consumers between the inverter and circuit breaker!
- The AC disconnecting device must be easily accessible.

NOTE

- The inverter HYD 3000 ... 6000-EP has a built-in RCD (univ. sensitive residual current protection). If an external RCD is required, we recommend an RCD type A featuring a residual current of 300 mA or higher.
- Please follow the national rules and regulations for the installation of external relays or circuit breakers!

Dimensioning

The AC output cables are three-wire cables for outdoor areas. To simplify the installation process, use flexible cables. The recommended cable size is 4–6mm².

The AC cable should be correctly dimensioned in order to ensure that the loss of power in the AC cable is less than 1% of the rated output. If the AC cable resistance is too high, then the AC voltage will increase; this may cause the inverter to become disconnected from the power grid. The relationship between the leakage power in the AC cable and the cable length, the cable cross-section, is displayed in the following illustration:

SCIFAR

ELECTRICAL CONNECTIONS

5.6.1 AC Load connector

Electrical voltage

- Ensure that the grid has been switched off before removing the AC connector.
- Select the suitable cable. Remove the insulating layer of the AC output cable using a wire stripper and in accordance with the following illustration:

2. Disassemble the connector in accordance with the following

illustration, guide the AC output cable through the cable gland;

 Connect the AC output cable in accordance with the following requirements and tighten the terminal using the Phillips screwdriver.

Connection	Cable
PE	Earthing cable (yellow-green)
L	Phase (brown)
Ν	Neutral conductor (blue)

4. Assemble the connector housing and screw the cable gland tight.

5. Connect the AC LOAD connector to the AC LOAD port of the inverter by turning it clockwise until it locks into place.

 Remove the AC LOAD connector by holding the unlock button and turning the connecter anticlockwise to the "unlock" position.

Electrical voltage

• Ensure that the grid has been switched off before removing the AC connector.

5.6.2 AC Grid connector

 Select the suitable cable. Remove the insulating layer of the AC output cable using a wire stripper and in accordance with the following illustration.

2. Pass the wires through the eye of the terminal;

 Lock the wires by tightening the screw using a hexagon socket wrench.

4. Push the terminal forward until a "click* sound is heard.

5. Connect the AC Load connector to the AC Load port.

To remove the connector, please use the removal tool and follow below steps.

5.7 Feed-in limitation function

The Anti-Reflux Power function refers to SOFARSOLAR's feed-in limitation function. When this function is enabled, the feed-in power of point of common coupling (PCC) will be limited to the set Reflux Power limitation.

Both the Hard Anti-Reflux Control and Anti-Reflux Control can be used together. However, when the Hard Anti-Reflux control is enabled, the Anti-Reflux power limitation cannot exceed the Reflux power limitation. If the Reflux power exceeds the Reflux power limitation, the overload protection will be triggered.

When the communication signal with the electricity meter is lost, the output power of the inverter is limited to the set value of the soft export limit and the fault protection will not be triggered. When the Hard Anti-Reflux Control is enabled, loss of signal with the meter triggers the inverter's fault protection.

The inverter output of HYD 5-20KTL-3PH series inverter has 4 sets of relays, which are electrically connected to the output end R/S/T/N respectively to ensure the continuity of the electrical connection of load R/S/T/N when the inverter is switched off the grid.

NOTE

- Anti-Reflux Function = Export Limit function
- Reflux Power = Export Power
- Hard Anti-Reflux control = Hard feed-in limitation control
- Anti-Reflux Control = Soft feed-in limitation control

5.8 System monitoring

The HYD 3000 ... 6000-EP inverters provide various communication methods for the system monitoring:

RS485 or WiFi stick (included in delivery)

GPRS, Ethernet stick (optional)

5.8.1 RS485 network

You can connect RS485-linked devices to your PC or a data logger via an RS485 USB adapter.

5.8.2 WiFi-, GPRS-, Ethernet stick

When you have installed the stick logger, the inverters can directly upload your operating, energy and alarm data in the SOLARMAN monitoring portal.

Inverter 1	Inverter 2	Inverter 3		
	·	·	(1.	1 10 4 10 4 10 10
Bun-ana,	Province of	Provide a		2000
<u>ى</u>				

5.9 Installation of the WiFi-, GPRS or Ethernet stick

- 1. Remove the waterproof WiFi/GPRS cover using a screwdriver.
- 2. Install the WiFi/GPRS/Ethernet stick.
- 3. Fasten the WiFi/GPRS module with screws.

Pin	Definition	Function
1	GND.S	USB power -
2	DP	USB data +
3	DM	USB data -
4	VBUS	USB power +

5.9.1 Configuration of the WiFi stick via the web browser

Preparation:The WiFi stick is installed in accordance with theprevious section and the SOFAR inverter must be in operation.Carry out the following steps in order to configure the WiFi stick:

- Connect your PC or smartphone with the WiFi network of the WiFi stick. The name of this WiFi network is "AP", followed by the serial number of the WiFi stick (see rating plate). When you are prompted for a password, you can find it on the label of the WiFi stick (PWD).
- 2. Open an Internet browser and enter the address **10.10.100.254**.
- Recommended browsers: Internet Explorer 8+, Google Chrome 15+, Firefox 10+
- Enter the username and password, which are both set to "admin" by default. The "Status" page will be opened.
- 5. Click on the "Wizard" in order to configure the WiFi stick for Internet access.
- **Result** The WiFi stick begins to send data to SolarMAN.

Register your system at the website home.solarmanpv.com. For this,

enter the serial number found on the stick logger.

Installers use the portal at pro.solarmanpv.com

5.9.2 Setting up the WiFi stick with the app

To download the app, search for "SOLARMAN" in the Apple or Google Play store, or use the following QR codes:

• SOLARMAN Smart (for end customers):

• SOLARMAN Business (for installers):

Configuration steps

- 1. After starting the app, register as a new user or enter the current SOLARMAN access data.
- 2. Create a new system and save the system data.

- Scan the barcode of the stick logger to assign an inverter to the system.
- Go to the newly created system in order to configure the stick logger (device/logger)
- Press the button on the WiFi stick for 1 second to activate the WPS mode of the stick so that the smartphone can be connected to the WiFi stick.
- Now, select your local WiFi network for Internet access and enter your WiFi password.
- 7. The WiFi stick is configured with the access data.

WiFi stick status

The LEDs on the WiFi stick provide information regarding the status:

LED	Status	Description			
NET:	Communication	On: Connection to server successful			
	with the router	Flashing (1 sec.): Connection to router successful			
		Flashing (0.1 sec.): WPS mode active			
		Off: No connection to router			
СОМ	Communication with inverter	Flashing (1 sec.): Communication with inverter			
		On: Logger connected to inverter			
		Off: No connection to inverter			

LED	Status	Description	
READY	Logger status	Flashing (1 sec.): Normal status	
		Flashing (0.1 sec.): Reset running	
		Off: Error status	
Reset button			
Keystroke Description		Description	
1 sec.		WPS mode	
5 sec.		Restart	
10 sec.		Restart (reset)	

5.9.3 Setting up the GPRS stick

The GPRS stick must be equipped with a SIM card:

The GPRS stick must be set up via the SOLARMAN Business. Please follow below steps.

1. Open the app and call up the Bluetooth Tools menu item

- 2. Identify the WiFi stick with the serial number and select it.
- 3. Call up the "Custom" item
- 4. Enter the command AP+YZAPN= "APN name of your grid operator"
- 5. (e.g. for T-Mobile: AP+YZAPN=internet.v6.telekom)
- 6. To check the setting, call up AP+YZAPN
- 7. You can check the status via the "Logger Status" and "Read" menu item. Depending on the grid operator, wait several minutes until the connection has been established and the status is normal:

and logge possible n	and logger? According to the clues to troubleshoot possible reasons			
Command su	coeed			
Logger Status		Logger Adapta	tion Type	
SIM card IDCID	Network Registry	Master Se	rver Info.	
Standby Server	infa.			
	More co	mmandis		
Rev	b	ng	Custom	
11	1 0	C	<	

5.9.4 Setting up the Ethernet stick

The Ethernet stick is delivered with DHCP as standard, so it automatically gets an IP address from the router. If you wish to set up a fixed IP address, connect a PC to the Ethernet stick and open the configuration page via the web address **10.10.100.254.**

5.10 Multifunctional COM Port

The COM Port interface of the HYD 3000 ... 6000-EP is displayed below:

Pin	Definition	Function	Description	
1	CANH	CAN high data		
2	CANL	CAN low data	Communication	
3	485-2TX+	RS485 differential signal +	with BMS	
4	485-2TX-	RS485 differential signal –		
5	485-1TX+	RS485 differential signal +	Wired or parallel	
6	485-1TX-	RS485 differential signal –	system monitoring	
7	GND-S	_ (DRMS) logic interfaces		
8	DRMS1/5	are applicable to the		
9	DRMS2/6	following safety standards:	Logic interface	
10	DRMS3/7	_ European General (50549)	connections	
11	DRMS4/8	Germany (4105)		
12	DRMS0			
13	CT-	The current sensor outputs a negative electrode	CT connection	
14	CT+	The current sensor outputs a positive electrode	CT connection	
15	RS485-B	RS485 differential signal +	Inverter monitoring	
16	RS485-A	RS485 differential signal -	and system control	

Please follow below steps to connect the wiring.

1. Remove the cable sheath at a length of 20–40 mm, and the

insulation of the cables at a length of 6–10 mm.

- 2. Connect the wires according to the required functions and pins.
- Close the housing and secure the cable gland by turning clockwise.
 Finally, connect the connector.

The functions of the communications interface must be set on the LCD display. Please refer to chapter 7.

5.10.1 RS485

For the monitoring and control of several inverters, you connect the RS485 wires in daisy-chain.

NOTE

- The RS485 line may not be any longer than 1000 m
- Assign each inverter its own Modbus address (1 to 31) via the LCD display

5.10.2 Logic interface (DRMs)

The pin definitions of the logic interface and the switching connections are as follows:

The function of the logic interface must be set on the LCD display; please observe the operating steps in chapter 7.

Logic interface pins are defined in accordance with various standard specifications.

Logic interface for AS/NZS 4777.2:2015

also known as Inverter Demand Response Modes (DRMs)

The inverter recognises all supported Demand Response commands and initiates the reaction within two seconds.

Pin	Function
8	DRM1/5
9	DRM2/6
10	DRM3/7
11	DRM4/8
12	DRM0
7	GND-S

Logic interface for VDE-AR-N 4105:2018-11

This function serves to control and/or limit the output power of the inverter.

The inverter can be connected to a radio ripple control receiver in order to dynamically limit the output power of all inverters within the system.

Radio ripple control Pin Name Inverter receiver 8 L1 Relay 1 input K1 - output relay 1 9 12 Relay 2 input K2 - output relay 2 10 L3 Relay 3 input K3 - output relay 3 11 L4 Relay 4 input K4 - output relay 4 7 G Earth Relay, common earth

The inverter is preconfigured on the following power levels

Relay status: Closing is 1, opening is 0

L1	L2	L3	L4	Active power	Cos (φ)
1	0	0	1	0%	1
0	1	0	0	30%	1
0	0	1	0	60%	1
0	0	0	0	100%	1

Logic interface for EN50549-1:2019

The active power output can be ended within five seconds following a command to the input interface.

Functional description of the terminal

Pin	Name	Inverter	Radio ripple control receiver
8	L1	Relay 1 input	K1 - output relay 1
7	G	Earth	Relay, earth

The inverter is preconfigured on the following power levels.

Relay status: Closing is 1, opening is 0

L1	Active power	Power drop rate	Cos (φ)
1	0%	< 5 seconds	1
0	100%	1	1

5.10.3 CT and smart meter

There are two different system configurations to get grid current information: using only a CT (System A) or a combination of a CT and an energy meter (System B). Please refer to the following diagrams.

SCIFAR

System A: CT without an energy meter

System B: CT with an energy meter

The HYD 3000 ... 6000-EP inverter is compatible with the DDSU666 single-phase smart meter. PIN 15 and PIN 16 are used for communication with the smart meter, which correspond to PIN 7 and PIN 8 on the electricity meter.

The 1/2 and 3/4 on the electricity meter are connected to voltage signals L and N respectively. The current needs to be connected to the CT, i.e. 5/6.

The direction of the CT should be as follows:

SCIFAR

In a setup without a smart meter, connect the CT to Pin 13 and Pin 14.

NOTE

• To ensure that the CT is connected in the correct direction, please use the inverter's CT calibration function.

5.10.4 Link port

• Up to 10 units can be connected in parallel.

- In a parallel setup, the AC load should also be connected in parallel.
- For the parallel switching of several devices, it is recommended to use a joint AC load break switch for the connected loads at both the LOAD and GRID connection.

- In order to evenly distribute the loads among the inverters, the cable length between each output and the load must be the same.
- If the maximum apparent power of a load is greater than 110% of the inverter's rated output, the device must not be connected via the AC LOAD terminal, but rather directly to the grid.
- The first and last inverters need to be connected with 8-pin connection terminals.

The Link Port is used to enable a parallel setup. The inverters can be connected in a Master/Slave configuration. In such a setup, only one energy meter is connected for measuring.

To ensure the correct operation of a parallel setup, set the correct parameters in the inverter's settings:

SCIFAR

Entry	Description
Parallel Control	Enable/disable a parallel setup. Both the Master and Slave unit(s) must have this function enabled.
Parallel Primary-Replica	Set one inverter as the Master (Replica), and the others as Slave (Replica)
Parallel Address	Each inverter needs to be assigned a unique parallel address.

NOTE

• The parallel address is different from the communication address used for monitoring.

COMMISSIONING THE INVERTER

6 Commissioning the inverter

6.1 Safety test before commissioning

ATTENTION

Check the voltage range

• Ensure that the DC and AC voltages are within the permissible range of the inverter.

6.2 Check before turning on inverter

Please ensure that the inverter and all the wiring are installed correctly, securely, and reliably, and that all environment requirements are met.

- 1. the inverter is firmly fastened onto the mounting bracket on the wall;
- the PV+ / PV- wires are firmly connected, and the polarity and voltage are correct;
- the BAT+ / BAT- wires are firmly connected, and the polarity and voltage are correct;
- the DC isolator is correctly installed between the battery and inverter, and it is turned OFF;
- 5. the GRID and LOAD cables correctly connected;
- the AC circuit breaker is correctly installed between the inverter GRID port and GRID, and it's turned OFF;
- the AC circuit breaker is correctly installed between the inverter LOAD port and critical load, and it's turned OFF;

the communication cable to the lithium battery has been correctly connected.

6.3 Starting the inverter

- 1. Switch on the DC switch.
- 2. Switch on the battery.
- 3. Switch on the DC isolator between the battery and inverter.
- 4. Switch on the AC circuit breaker between the inverter's GRID port and GRID.
- Switch on the AC circuit breaker between the inverter's LOAD port and critical load.

When the DC output generated by the solar system is at a sufficient level, the inverter starts automatically. A correct operation is indicated by the screen displaying "normal".

NOTE

- Different distribution network operators in various countries have differing requirements for the grid connection of gridcoupled PV inverters.
- Ensure that you have selected the correct country code according to regional authority requirements, and consult a qualified electrician or employees of electrical safety authorities.
- SofarSolar is not responsible for the consequences of selecting the incorrect country code.

• The selected country code influences the device grid monitoring. The inverter continuously checks the set limits and, if required, disconnects the device from the grid.

6.4 Initial setup

You need to set the following parameters before the inverter starts to operate.

Parameter	Description
Language	Default language is English
Time	Set to the local time.
Safety	Download the corresponding safety parameters file for your country from our website, and import it to the inverter through a USB drive.
Battery	Configure the battery setup according to your demands.

Setting the country code

NOTE

- Different distribution network operators in various countries have differing requirements for the grid connection of gridcoupled PV inverters.
- Ensure that you have selected the correct country code according to regional authority requirements, and consult a qualified electrician or employees of electrical safety authorities.

- SofarSolar is not responsible for the consequences of selecting the incorrect country code.
- The selected country code influences the device grid monitoring. The inverter continuously checks the set limits and, if required, disconnects the device from the grid.

Country	Code	Standard
Australia	002-000	General
	002-001	AU-WA
	002-002	AU-SA
	002-003	AU-VIC
	002-004	AU-QLD
	002-005	AU-VAR
	002-006	AUSGRID
	002-007	Horizon
	002-008	AU-SA-HV
Belgium	008-000	General
	008-001	HV
Brazil	028-000	220 V grid
	028-001	LV
	028-002	230 V grid
	028-003	254 V grid
China	010-000	General
	010-001	Taiwan
	010-002	MV
	010-003	HV
Croatia	107-000	
Cyprus	024-000	

COMMISSIONING THE INVERTER

Denmark	005-000	General
	005-001	TR322
Dubai	046-000	DEWG
	046-001	DEWG MV
EU	018-000	EN50438
	018-001	EN50549
	018-002	EN50549-HV
Europe	022-000	
(general)	022-001	
France	011-000	VDE0126
	011-001	FAR Arrete23
	011-002	VDE0126-HV
Germany	000-000	VDE4105
	000-001	BDEW
	000-002	VDE0126
	000-003	VDE4105-HV
	000-004	BDEW-HV
Greece	006-000	Continent
	006-001	Islands
India	025-000	
Ireland	039-000	EN50438
Italy	001-000	CEI-021 Internal
	001-001	CEI-016 Italy
	001-002	CEI-021 External
	001-003	CEI-021 In Areti
	001-004	CEI-021 Internal-HV
Korea	020-000	
Lithuania	108-000	

Mexico	035-000	LV
Netherlands	007-000	General
New Zealand	027-000	
Philippines	026-000	
Poland	012-000	LV
	012-001	MV
	012-002	HV
Spain	003-000	RD1699
	003-001	RD1699-HV
Sweden	021-000	
Turkey	004-000	General
United	009-000	G99
Kingdom	009-001	G98
	009-002	G99-HV
Slovakia	029-000	VSD
	029-001	SSE
	029-002	ZSD
South Africa	044-000	
	044-001	HV
Thailand	040-000	PEA
	040-001	MEA
Ukraine	033-000	
	034-000	
IEC EN61727	019-000	
Wide range - 60 Hz	038-000	
LV range - 50 Hz	042-000	

OPERATION OF THE DEVICE

7 Operation of the device

This chapter describes the LCD and LED displays of the HYD 3000 ... 6000-EP inverter.

7.1 Control panel and display field

7.1.1 Buttons and display lights

Button

Button	Name	Description
L	Back	Previous menu level, enter menu
	Up	Select previous menu entry, increase setting value
↓	Down	Select next menu entry, decrease setting value
L	Enter	Enter Menu item, switch to next digit, confirm setting

LEDs

On-grid (green)	ON: "Normal" state
	Flashing: "Standby" mode
Off-grid (green)	ON: "Normal" state
	Flashing: "Standby" mode
ALARM (red)	ON: "Error"

7.2 Standard display

The display shows all relevant information of the inverter.

	Press UP button, to show PV parameters like current,
	voltage and power
Ι	Press DOWN button to show GRID parameters such as
	voltage, current and frequency
	Press DOWN button again to show Battery 1 parameters
	like current, power, state of charge etc.
	Press DOWN button again to show Battery 2 parameters
•	like current, power, state of charge etc.

7.3 Energy Storage Modes

The HYD 3000 ... 6000-EP offers five operational modes which determine the way the inverter interacts with the battery.

NOTE

• The default mode is the Self-use Mode.

7.3.1 Self-use Mode

The inverter automatically charges and discharges the battery according to the following rules:

If the load is more than PV generation plus battery, the inverter will import power from the grid

The priority of power supply: PV, Battery, Grid

The priority of power consumption: Loads, Battery, Grid

 If it is not allowed to export power to the grid, an energy meter and/or CT needs to be installed, and the "Anti Reflux Control" function has to be turned ON.

7.3.2 Time-of-Use Mode

The user can set up to 4 rules on when the battery should be charged. Each rule can be enabled or disabled. The rules include:

- Time (from ... to ...)
- SOC (%)
- Charge
- Effective date
- Weekdays

In below example, the battery will be charged with 1 kW between 2–4am if the SOC is below 70%. This rule is active every day from 22nd December until 21st March.

Set Time-of-use Mode

OPERATION OF THE DEVICE

Rule 0:	Enabled	/ Disabled	
From	То	SOC	Charge
02h00m - 04h00m 070% 01000W		01000W	
Effective	date		
Dec.22	-	Mar.21	
Weekday	select		
Mon. Tue. Wed. Thu. Fri. Sat. Sun.			

7.3.3 Timing Mode

With the Timing Mode the user can define fixed times of the day to charge or discharge the battery with a certain power.

Up to 4 rules (rule 0, 1, 2 and 3) can be set. If more than one rule is valid for any given time, the rule with the lower number is active. Each rule can be enabled or disabled. The charging and discharging period for a rule can be enabled separately.

In below example, the battery will be charged with 2 kW between 22– 4am, and discharged with 2,5 kW between 2–4pm:

Timing Mode		
Rule 0: Enabled / Disabled / Enabled		
charge / Enabled discharge		
Charge Start	22 h 00 m	
Charge End	05 h 00 m	
Charge Power	02000 W	
DisCharge Start	14 h 00m	
DisCharge End	16 h 00m	
DisCharge Power	02500 W	

7.3.4 Passive Mode

In systems with external energy management systems the passive mode should be used. The inverter's operation will be controlled by the external controller using the Modbus RTU protocol. Please contact SofarSolar if you need the Modbus protocol definition for this device.

7.3.5 EPS Mode

With the EPS Mode turned ON, the inverter provides energy to the load when it is off-grid, e.g. when there is no public grid connection or during grid outages.

generation is reduced by adjusting the MPPT

If the PV generation is less than the load consumption, the battery will supply power to the load.

7.4 Menu structure

NOTE

• Several settings require a password to be entered (the standard password is 0001).

Press the button to bring up the main menu.

Main menu

1. System Settings	See "System Settings menu"
2. Advanced Settings	See "Advanced Settings menu"
3. Energy Statistics	See "Energy Statistics menu"
4. System Information	See "System Information menu"
5. Event list	See "Set country codes"
6. Software update	See "Firmware update"

"System Settings" menu

1. Language Setting	Sets the display language of the
	inverter

SCIFAR

OPERATION OF THE DEVICE

2. Time	Sets the system time of the inverter
3. Safety Param.	Safety parameters are set by using a
	USB drive (see chapter 6.4)
4. Energy Storage Mode	Select the operation mode (default
	mode is Self-use Mode)
5. Auto Test	(Only for Italy)
6. EPS Mode	The Emergency Power Supply (EPS)
	mode is only available if a battery is
	connected.
7. Communication Addr.	Enter the Modbus address (when
	several inverters require
	simultaneous monitoring), standard:
	01

NOTE

• EPS Mode, Anti Reflux, I/V Curve Scan and Logic Interface are turned OFF by default and have to be enabled by the user.

"Advanced Settings" menu

1. Battery Parameter	Set the battery parameters
2. Anti Reflux	Limit the power exported to the grid
3. IV Curve Scan	Find the maximum power point
4. Logic interface	Control logic interfaces
5. Factory Reset	Clear system data (energy/events
	data)
6. Parallel setting	Parallel system settings

7. Bluetooth Reset	Reset the Bluetooth connection
8. CT Calibration	Calibrate the direction and phase of
	the CT

Energy Statistics menu

This menu displays the PV system's energy statistics (in kWh) collected by the inverter, including PV generation, load, export, import, charge, and discharge.

Press the DOWN button to cycle between TODAY, MONTH, YEAR, LIFETIME.

System Information menu

This menu displays information about the connected inverter, battery and the set safety parameters.

1. Inverter Info

- 2. Battery Info
- 3. Safety Param.

Event list menu

The event list is used to display the real time event recordings, including the total number of events and each specific ID no. and event time. The most recent events are listed at the top.

SCIFAR

- 1. Current Event List
- 2. History Event List

Software update

The user can update the software via the USB flash drive. SofarSolar will provide the firmware update when it is required.

- Switch the DC and AC switches off and then remove the communication cover. If an RS485 line has been connected, ensure that the nut is loosened. Ensure that the communication line is not energised. Remove the cover to prevent the connected communications connector from becoming loose.
- 2. Insert the USB stick into the computer.
- 3. SofarSolar will send the firmware update to the user.
- 4. Unzip the file and copy the original file to a USB stick. Attention: The firmware update file must be in the "firmware" subfolder!
- 5. Insert the USB flash drive into the USB interface of the inverter.
- Switch on the DC switch and go to menu item "5. Software update" on the LCD display.
- 7. Enter the password (the standard password is 0715).
- The system will then successively update the main DSP, auxiliary DSP and ARM processors. Pay attention to the displays.
- If an error message appears, switch off the DC switch and wait until the LCD screen goes out. Then, switch the DC switch back on and proceed with the update from step 5.

- 10. After the update is complete, switch the DC switch off and wait until the LCD screen goes out
- 11. Re-establish a watertight communication connection
- 12. Switch the DC and AC circuit breaker back on
- 13. You can check the current software version in item "3. Software version" of the SystemInfo menu.

8 Troubleshooting handling

8.1 Troubleshooting

This section contains information and procedures pertaining to the remedying of potential problems with the inverter.

To carry out troubleshooting, proceed as follows:

 Check the warnings, error messages or error codes displayed on the screen of the inverter.

If no error information is displayed on the screen, check whether the following requirements have been fulfilled:

- Has the inverter been set up in a clean, dry, well-ventilated area?
- Is the DC switch set to ON?
- Are the cables sufficiently dimensioned and short enough?
- Are the input connections, output connections and the wiring all in good condition?
- Are the configuration settings for the relevant installation correct?
- Are the display field and the communication cables correctly connected and undamaged?

Please proceed as follows to display the recorded problems: Hold the button down to bring up the main menu of the standard interface. Select "2. Event list" and hold the button down to bring up the event list.

Earth fault alarm

This inverter is compliant with IEC 62109-2 Clause 13.9 for earth fault protection.

If an earth fault alarm occurs, the error is displayed on the LCD screen, the red light illuminates and the error can be found in the error history log.

NOTE

 In the case of devices equipped with a stick logger, the alarm information can be viewed on the monitoring portal and retrieved via the smartphone app.

Event list

Code	Name	Description	Solution
ID001	GridOVP	The voltage of the power grid is	If the alarm occurs
		too high	occasionally, it may be due
ID002	GridUVP	The voltage of the mains is too low	to the power grid. The
ID003	GridOFP	The mains frequency is too high	inverter will automatically
ID004	GridUFP	The mains frequency is too low	return to normal operation
			when the mains power
			returns to normal.
			If the alarm occurs
			frequently, check whether
			the mains
			voltage/frequency is within
			the permissible range. If so,
			check the AC circuit
			breaker and AC wiring of
			the inverter.
			If the alarm occurs
			repeatedly, contact
			technical support to adjust
			the voltage and frequency
			limits after obtaining
			approval from the local
			power grid operator.

ID005	GFCI	Earth fault	If the error occurs
			occasionally, it may be due
			to external factors. The
			inverter will automatically
			return to normal operation.
			If the error occurs
			frequently and lasts for a
			long time, check whether
			the insulation resistance
			between the PV generator
			and earth (ground) is too
			low and check the
			insulation of the PV cables.
ID006	OVRT fault	OVRT function is faulty	
ID007	LVRT fault	LVRT function is faulty	-

ID007	LVRT fault	LVRT function is faulty	
ID008	IslandFault	Island protection fault	-
ID009	GridOVPIn stant1	Transient overvoltage of mains	-
ID010	GridOVPIn stant2	Transient overvoltage of mains voltage 2	 ID006-041 are internal faults of the inverter. Turn the DC switch OFF, wait 5
ID011	vGridLineF ault	Fault in the mains voltage	minutes and then turn the DC switch ON_Check
ID012	InvOVP	Inverter overvoltage	whether the error has been
ID017	HwADFault IGrid	Mains current measurement error	cleared. If not, please
ID018	HwADFault DCI	DC current measurement error	support.
ID019	HwADFault VGrid(DC)	Sampling error of the mains voltage (DC)	-
ID020	HwADFault VGrid(AC)	Mains voltage sampling error (AC)	-

ID021	GFCIDevic	Leakage current sampling error	
	eFault(DC)	(DC)	
ID022	GFCIDevic	Leakage current sampling error	_
	eFault(AC)	(AC)	
ID023	HwADFault	DC load voltage sampling error	_
	DCV		
ID024	HwADFault	DC input current sampling error	_
	ldc		
ID025	HwADErrD	1	_
	CI(DC)		
ID026	HwADErrld	1	_
	cBranch		
ID029	Consistent	The GFCI sample between the	_
	Fault_GFCI	master DSP and the slave DSP is	
		not consistent	
ID030	Consistent	The line voltage sample between	_
	Fault_Vgrid	the master DSP and the slave	
		DSP is not consistent.	
ID033	SpiCommF	SPI communication error (DC)	-
	ault(DC)		
ID034	SpiCommF	SPI communication error (AC)	_
	ault(AC)		
ID035	SChip_Faul	Chip error (DC)	_
	t		_
ID036	MChip_Fau	Master chip error (AC)	
	lt		_
ID037	HwAuxPow	Auxiliary voltage error	
	erFault		_
ID041	RelayFail	Relay detection failure	_
ID042	IsoFault	Insulation resistance is too low	Check the insulation
			resistance between the F

			generator and earth
			(ground), rectify the fault if
			there is a short circuit.
ID043	PEConnect	Earth fault	Check the PE conductor for
	Fault		function
ID044	PV Config	Incorrect input mode configuration	Check the MPPT input
	Error		mode setting (parallel
			mode/independent mode)
			of the inverter and correct if
			necessary.
ID045	CTD	CT error	Check that the wiring of the
	isconnect		current transformer is
			correct.
ID049	TempFault	Battery temperature error	Make sure that the battery
	_Bat		does not get too hot.
			Check that the temperature
			sensor has been correctly
			connected to the battery.
ID050	TempFault	Temperature error heat sink 1	
	_HeatSink1		_ Make sure that the inverter
ID051	TempFault	Temperature error heat sink 2	has been installed in a cool
	_HeatSink2		and well-ventilated place
ID052	TempFault	Heat sink temperature error 3	without direct sunlight.
	_HeatSin3		_
ID053	TempFault	Temperature error heat sink 4	Make sure the inverter is
	_HeatSink4		installed vertically and the
ID054	TempFault	Temperature error heat sink 5	ambient temperature is
	_HeatSin5		below the inverter's
ID055	TempFault	Temperature error heat sink 6	temperature limit.
	_HeatSin6		

ID057	TempFault	Temperature error ambient	
	_Env1	temperature 1	_
ID058	TempFault	Temperature error ambient	
	_Env2	temperature 2	_
ID059	TempFault	Temperature error module 1	
	_lnv1		
ID060	TempFault	Temperature error module 2	-
	_lnv2		_
ID061	TempFault	Temperature error module 3	-
	_lnv3		
ID062	TempDiffEr		
	rlnv		
ID065	VbusRmsU	Asymmetrical bus voltage RMS	Internal error of the
	nbalance		inverter. Switch off the
ID066	VbusInstan	The transient value of the bus	inverter, wait 5 minutes and
	tUnbalance	voltage is unbalanced	then switch the unit on
ID067	BusUVP	The DC bus voltage is too low	again.
		during mains connection	
ID068	BusZVP	during mains connection The DC bus voltage is too low	If the error persists, contact
ID068	BusZVP	during mains connection The DC bus voltage is too low	If the error persists, contact Technical Support.
ID068	BusZVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the inverter. If this is the case,
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the inverter. If this is the case, adjust the number of PV
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the inverter. If this is the case, adjust the number of PV modules in series. After the
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the inverter. If this is the case, adjust the number of PV modules in series. After the correction, the inverter
ID068	BusZVP PVOVP	during mains connection The DC bus voltage is too low The PV input voltage is too high	If the error persists, contact Technical Support. Check whether the PV series voltage (Voc) is higher than the maximum input voltage of the inverter. If this is the case, adjust the number of PV modules in series. After the correction, the inverter automatically returns to its

ID070	BatOVP	Battery overvoltage	Check whether the voltage of the battery is higher than the maximum input voltage of the inverter. If this is the case, adjust the number of battery modules in series.
ID071	LLCBusOV P	LLC Bus overvoltage protection	
ID072	SwBusRms OVP	Inverter bus voltage RMS Software overvoltage	
ID073	SwBusInst antOVP	Inverter bus voltage instantaneous Software overvoltage	
ID081	SwBatOCP	Software overcurrent protection of the battery	
ID082	DciOCP	Dci overcurrent protection	
ID083	SwOCPInst ant	Instantaneous output current protection	inverter. Switch off the
ID084	SwBuckBo ostOCP	BuckBoost software sequence	then switch the unit on
ID085	SwAcRms OCP	Output RMS current protection	lf the error persists contact
ID086	SwPvOCPI nstant	PV overcurrent software protection	Technical Support.
ID087	lpvUnbalan ce	PV flows in uneven parallelism	
ID088	lacUnbalan ce	Unbalanced output current	
ID091	SwAcCBC Fault		
ID097	HwLLCBus OVP	LLC bus hardware overvoltage	

ID098	HwBusOV	Inverter bus hardware overvoltage	
ID099	P HwBuckBo ostOCP	BuckBoost hardware overflows	
ID100	HwBatOCP	Battery hardware overflow	
ID102	HwPVOCP	PV hardware overflows	
ID103	HwACOCP	Mains current is too high and has	
		triggered hardware protection	
ID105	MeterCom	Communication fault with meter	Check communication to
	mFault	unit	meter.
ID110	Overload1	Overload protection 1	Please check whether the
ID111	Overload2	Overload protection 2	inverter is operating under
ID112	Overload3	Overload protection 3	overload.
ID113	OverTemp	The inverter has throttled due to	Make sure that the inverter
	Derating	too high a temperature	has been installed in a cool
			and well-ventilated place
			without direct sunlight.
			Make sure the inverter is
			installed vertically and the
			ambient temperature is
			below the temperature limit
			of the inverter.
ID114	FreqDerati	Mains frequency is too high	
	ng		
ID115	FreqLoadin	Mains frequency is too low	Make sure that the mains
	g		frequency and voltage are
ID116	VoltDeratin	AC voltage is too high	within the permissible
	g		range.
ID117	VoltLoadin	AC voltage is too low	
	g		

ID124	BatLowVolt	Protection against battery	Please check if the hatten
	ageAlarm	undervoltage	- voltage of the invertor is too
ID125	BatLowVolt	Low battery voltage shutdown	
	ageShut		low.
ID129	unrecoverH	Mains current is too high and has	
	wAcOCP	caused an unrecoverable	
		hardware fault	
ID130	unrecoverB	Bus voltage is too high and has	-
	usOVP	caused a non-recoverable fault	
ID131	unrecoverH	Permanent bus hardware failure	Internal error of the
	wBusOVP	due to overvoltage	inverter. Switch off the
ID132	unrecoverl	Input current is unbalanced and	inverter, wait 5 minutes and
	pvUnbalan	has caused an unrecoverable fault	then switch the unit on
	се		again.
ID133	unrecoverE	Permanent battery overcurrent	-
	PSBatOCP	error in EPS mode	If the error persists, contact
ID134	unrecoverA	Permanent error due to transient	Technical Support.
	cOCPInsta	overcurrent	
	nt		
ID135	unrecoverl	Permanent unbalanced output	
	acUnbalan	current error	
	се		
ID137	unrecoverP	Permanent input mode	Check the MDDT input
	vConfigErr	configuration error	mode setting (parallel
	or		mode setting (paraller
ID138	unrecoverP	Permanent input overcurrent error	of the inverter and correct it
	VOCPInsta		if necessary
	nt		n necessary.
ID139	unrecoverH	Permanent input hardware	Internal error of the
	wPVOCP	overcurrent error	inverter. Switch off the
ID140	unrecoverR	Permanent error of the mains relay	inverter, wait 5 minutes and
	elayFail		then switch the unit back

ID141	unrecoverV	The bus voltage is unbalanced	on.
	busUnbala	and has caused an unrecoverable	
	nce	error	If the error persists, contact
ID142	PermSpdF		Technical Support.
	ail(DC)		
ID143	PermSpdF		-
	ail(AC)		
ID145	USBFault	USB error	Check the USB connection
			of the inverter.
ID146	WifiFault	Wifi error	Check the inverter's WiFi
			connection.
ID147	BluetoothF	Bluetooth error	Check the Bluetooth
	ault		connection of the inverter.
ID148	RTCFault	RTC clock failure	
ID149	CommEEP	EEPROM error of the	-
	ROMFault	communication card	latered and a filler
ID150	FlashFault	Communication card FLASH error	internal error of the
ID152	SafetyVerF		inverter, wait 5 minutes and
	rault		then switch the unit back
ID153	SciCommL	SCI communication error (DC)	on
	ose(DC)		If the error persists contact
ID154	SciCommL	SCI communication error (AC)	technical support.
	ose(AC)		
ID155	SciCommL	SCI communication error (fuse)	
	ose(Fuse)		
ID156	SoftVerErro	Inconsistent software versions	Download the latest
	r		firmware from the website
			and launch the software
			update. If the error persists,
			contact technical support.

ID157	BMSComm	Lithium battery communication	Make sure your battery is
	unicatonFa	error	compatible with the
	ult		inverter.
			CAN communication is
			recommended. Check the
			communication line or the
			connection of the battery
			and the inverter for errors.
ID161	ForceShutd	Forced shutdown	The inverter has been
	own		forcibly disconnected.
ID162	RemoteSh	Remote shutdown	The inverter is shut down
	utdown		remotely.
ID163	Drms0Shut	DRM 0 shutdown	The inverter is running with
	down		a Drms0 shutdown.
ID165	RemoteDer	The inverter has reduced its power	
	ating	due to remote control	
ID166	LogicInterfa	The inverter has reduced its power	This message is for
	ceDerating	due to the digital inputs	information and is not an
ID167	AlarmAntiR	Power reduction due to current	error
	efluxing	sensor or SmartMeter	
		configuration	
ID169	FanFault1	Fan 1 fault	
ID170	FanFault2	Fan 2 fault	
ID171	FanFault3	Fan 3 fault	Check if the corresponding
ID172	FanFault4	Fan 4 fault	fan of the inverter is
ID173	FanFault5	Fan 5 fault	running normally.
ID174	FanFault6	Fan 6 fault	
ID175	FanFault7	Fan 7 fault	
ID176	MeterCom	Communication fault with meter	Check communication to
	mLose	unit	meter

ID177	BMS OVP	BMS overvoltage alarm	Internal error in the
ID178	BMS UVP	BMS Undervoltage alarm	connected lithium battery.
ID179	BMS OTP	BMS High temperature warning	Switch off the inverter and
ID180	BMS UTP	BMS low temperature warning	the lithium battery, wait 5
ID181	BMS OCP	BMS overload warning during charging and discharging	the components on again.
ID182	BMS Short	BMS Short circuit alarm	If the error persists, contact Technical Support.

8.2 Maintenance

Inverters do not generally require daily or routine maintenance. Before carrying out cleaning, ensure that the DC switch and AC circuit breaker between the inverter and power grid have been switched off. Wait at least 5 minutes before carrying out cleaning.

8.2.1 Cleaning the inverter

Clean the inverter using an air blower and a dry, soft cloth or a soft bristle brush. Do NOT clean the inverter with water, corrosive chemicals, cleaning agents etc.

8.2.2 Cleaning the heat sink

In order to help guarantee correct long-term operation of the inverter, make sure that there is sufficient space for ventilation around the heat sink. Check the heat sink for blockages (dust, snow etc.) and remove them if present. Please clean the heat sink using an air blower and a dry, soft cloth or a soft bristle brush. Do NOT clean the heat sink with water, corrosive chemicals, cleaning agents etc.

9 Technical data

Data Sheet	HYD 3000-	HYD 3680-	HYD 4000-	HYD 4600-	HYD * 5000-	HYD 5500-	HYD 6000-
	EP	EP	EP	EP	EP	EP	EP
Battery Paramete	rs						
Battery type			Lithiu	im-ion, Lead	l-acid		
Nominal battery				48			
Battery voltage range (V)		42–58					
Battery capacity (Ah)	50–2000						
Max. charging / discharging power (W)	3750	4000	4250	5000			
Max. charging current (A)	75	80	85	100			
Max. discharging current (A)	75	80	85	100			
Charging curve (Lithium-ion)				BMS			
Charging curve (Lead-acid)	3-adaptive, with maintenance charging						
Depth of discharge	Lithium-ion: 0-90% DOD adjustable, Lead-acid: 0-50% DOD adjustable						
Input DC (PV side)							
Recommended max. PV input power (Wp)	4500	5400	6000	6900	75	500	9000
Max DC power for single MPPT (W)				3500			

Max. input voltage (V)				600			
Start-up voltage	100						
Rated input voltage (V)	360						
MPPT operating voltage range (V)				90–580			
Full power MPPT voltage range (V)	160–520	180–520	200–520	230–520	250-	-520	300–520
Number of MPP trackers				2			
Max. input current per MPPT (A)				13/13			
Max. input short circuit current per MPPT (A)	18/18						
Output/Input AC (Grid side)							
Nominal AC power (W)	3000	3680	4000	4600	50	00	6000
Max. AC power output to utility grid (VA)	3300	3680	4400	4600	5000	5500	6000
Max. AC power from utility grid (VA)	6000	7360	8000	9200	10000 12000		
Max. AC current output to utility grid (A)	15	16	20	20,9	21,7	25	27,3
Max. AC current from utility grid (A)	c. AC current 27,3 32 36,4 41,8 43,4 n utility grid (A) 27,3 32 36,4 41,8 43,4		54,6				
Nominal grid voltage	L/N/PE, 220 V, 230 V, 240 V						
Grid voltage range	d voltage range 180Vac-276Vac (Acc		(According t	o local stand	dard)		

TECHNICAL DATA

Nominal grid frequency	50 Hz / 60 Hz					
Output THDi						
(@nominal power)	<3%					
Power factor		1 default (+/-0.8 adjustable)				
Output AC (Emer	gency Pow	ver Supply)				
Max. apparent power (VA)	3000	3680	4000	4600	5000	
Peak output power, duration (VA)	3600, 60s	4400, 60s	4800, 60s	5520, 60s	6000, 60s	
Max. output current (A)	13,6	16	18,2	20,9	22,7	
Nominal voltage, Frequency	220 V/230 V, 50/60Hz					
THDi (@Nominal power)	<3%					
Switch time	<10 ms					
Efficiency						
MPPT efficiency				99.9%		
Max efficiency of solar inverter	1cy of 97.6%			97.8% 98.0%		98.0%
European efficiency of solar inverter	97.2%			97.3% 97.5%		
Max. charging efficiency of battery	94.6%					
Max. charging efficiency of battery	charging Incy of 94			94.6%		

Max. discharging efficiency of battery	94.6%					
Protection	Protection					
PV reverse polarity protection	Yes					
PV insulation detection	Yes					
Ground fault monitoring	Yes					
Overcurrent protection (A)	Yes					
Overvoltage protection	Yes					
DC switch	Yes					
Firm frequency response function	optional					
SPD protection	MOV: Type III standard					
General Data						
Standby self- consumption	<10 W					
Topology	High frequency isolation (for battery)					
Degree of protection	IP65					
Ambient temperature range	-30°C+60°C (above 45°C derating)					
Allowable relative humidity range	0100%					
Communication	RS485 / WiFi / Bluetooth / CAN2.0 / Etherrnet, optional: GPRS					
Parallel operation	Yes (up to 10 units)					
Protective class	Class I					
Max. operating altitude	4000 m					

TECHNICAL DATA

Current sensor connection (A)	External			
Noise	<25 dB			
Weight (kg)	21.5			
Cooling	Natural			
Dimensions	482*503*183mm			
Display	LCD, App via Bluetooth			
Warranty	5 years, optional: up to 20 years			
Standards				
EMC	EN 61000-6-2, EN 61000-6-3, EN 61000-3-2, EN 61000-3-3, EN 61000-3-11, EN			
LINO	61000-3-12			
Safety standards	IEC 62109-1/2, IEC 62040-1, IEC 62116, IEC 61727, IEC 61683, IEC			
Salety standards	60068(1,2,14,30)			
Crid standards	AS/NZS 4777, VDE V 0124-100, V 0126-1-1, VDE-AR-N 4105, CEI 0-21, EN			
Ghu stanuarus	50549, G83/G59/G98/G99, UTE C15-712-1, UNE 206 007-1			
The models marked with " * " are available only for some designated countries.				

Shenzhen SOFARSOLAR Co., Ltd. 11/F, Gaoxinqi Technology Building, District 67, XingDong Community, XinAn Street, Bao'An District, Shenzhen, China

SofarSolar GmbH

Krämerstrasse 20

72764 Reutlingen

Germany

Email: service@sofarsolar.com

Web: www.sofarsolar.com